125 - Fields extensions. Examples and applications.

1 On fields extensions

1.1 About extensions

Definition 1. Let K be a field, a field L is a field extension of K if $K \subset L$ and the field operations over K and L are the same. We say that K is a subfield of L and we denote L / K.

Example 2. $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ and then $\mathbb{R} / \mathbb{Q}, \mathbb{C} / \mathbb{Q}$ and \mathbb{C} / \mathbb{R} are fields extensions.

Definition 3. Let $L / K \mathrm{~W}$ be a field extension and \mathcal{S} a subset of L, we define $K(\mathcal{S})$ as the smallest extension of K which contains \mathcal{S}.

Example 4. For example :

- $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{R}\}$
- $\mathbb{C}=\mathbb{R}(i)$
- The $n t h$ cyclotomic field is the smallest extension of \mathbb{Q} wich contains the set of the nth roots of unity $\mathbb{Q}_{n}=\mathbb{Q}\left(\left\{e^{i 2 k \pi / n} \mid k \in 0, . ., n\right\}\right)$.

Proposition 5. If L is an extension of K then L is a K vectorial space.

Definition 6. Let L / K be an extension field, the degree [$L: K$] of this extension is the dimension of L as a $K-$ vectorial space.

Example 7. $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2,[\mathbb{R}: \mathbb{Q}]=\infty,[\mathbb{C}, \mathbb{R}]=2$
Lemma 8 (Telescopic basis). Let M / L and L / K two fields extensions. Then $[M: K]=[M: L][L: K]$.

Example 9. $X^{3}+X+1$ is irreducible over \mathbb{F}_{2} and \mathbb{F}_{16}.

1.2 Linear algebra and fields extensions

Proposition 10. Let $M \in \mathcal{M}_{m, n}(K) \subset \mathcal{M}_{m, n}(L)$ where L / K is a field extension, the rank of M as an element of
$\mathcal{M}_{m, n}(K)$ is the same as the rank of M as an element of $\mathcal{M}_{m, n}(L)$. If $m=n$, the characteristic and minimal polynomials of M are the same in K and L.
Corollary 11. Let u_{K} be the linear mapping associated with M over K and u_{L} over L then,

- u_{K} is injective if and only if u_{L} is injective
- u_{K} is surjective if and only if u_{L} is surjective.

Application 12. $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is diagonalizable over \mathbb{C} but not over \mathbb{R}.

Proposition 13. The invariants of tensors are invariant by fields extension.

Application 14. Let L / K be a field extension and $M, N \in \mathcal{M}_{n}(K) . M$ and N are similar over K if and only if they are similar over L.

1.3 Algebraic and transcendental elements

Definition 15. If L / K is a field extension, an element a of L is called an algebraic element over K if a is a root of a non-zero polynomial of $K[X]$. A non-algebraic element is called transcendental.
Example 16. $\sqrt{2} \in \mathbb{R}$ is algebraic over \mathbb{Q} but π and e are not.

Definition 17. Let $a \in L$ be an algebraic element over K, the set of annulator polynomials of a is a non-zero ideal of $K[X]$. The unique monic generator of this ideal is called the minimal polynomial of a and is represented by $\mu_{K, a}$.
Example 18. $\mu_{\mathbb{R}, i}=X^{2}+1, \mu_{\mathbb{R}, j}=X^{2}+X+1, \mu_{\mathbb{Q}, \sqrt{2}}=$ $X^{2}-2$

Proposition 19. The minimal polynomial of $a \in L$ over K is irreducible over K.

Definition 20. Let L / K be a field extension and $a \in L$ algebraic over K. The degree of a as an algebraic element is the degree of $\mu_{K, a}$.

Theorem 21. Let L / K a field extension and $a \in L$. Then a is algebraic over K if and only if $K(a)=K[a]$ if and only if the K-vectorial space $K[a]$ has finite dimension.

Proposition 22. If the degree of a is $n \in \mathbb{N}$, then $[K(a)$: $K]=n$.

Theorem 23. Let L / K be a field extension, the set of algebraic elements of L over K is a field.

Theorem 24 (Primitive element theorem). If $\operatorname{char}(K)=0$ and if L / K is a field extension of finite degree, then there exists $a \in L$ such that $L=K(a)$.

Definition 25. The extension L / K is algebraic if every element of L is algebraic over K.

Example 26. Extensions of finite degree are algebraic.

Proposition 27. Let L / K an extension. Then L is algebraic and finite if and only if there exist $a_{1}, . ., a_{n} \in L$ algebraic over K such that $L=K\left(a_{1}, \ldots, a_{n}\right)$.

Proposition 28. Let L / K be a field extension, and $a, b \in$ L be two algebraic elements. If $\mu_{K, a}=\mu_{K, b}$, then there exists a field isomorphism $f: K(a) \rightarrow K(b)$ such that $f(a)=b$ and $\forall x \in K, f(x)=x$.

Example 29. Let p be a prime number and ω be a $p t h$ root of unity. Then for all $1 \leqslant k \leqslant p-1$, there exists a field isomorphism $\sigma_{k}: \mathbb{Q}(\omega) \rightarrow \mathbb{Q}\left(\omega^{k}\right)$ such that $\sigma_{k}(\omega)=\omega^{k}$.

2 Building extensions

2.1 Rupture field and splitting field

Definition 30. Let K be a field and $P \in K[X]$ be a non constant (irreducible) polynomial. A rupture field of P over K is an extension L / K such that P has a root $\alpha \in L$ and $L=K(\alpha)$.
Example 31. For examples:

- \mathbb{Q}_{n} is a rupture field over \mathbb{Q} of Φ_{n}.
- $\mathbb{Q}(\sqrt[3]{2})$ is a rupture field of $X^{3}-2$ over \mathbb{Q}.
- \mathbb{C} is a rupture field of $X^{2}+1$ over \mathbb{R}.

Theorem 32. There exists a rupture field and all rupture fields are isomorphic to $K[X] /(P)$ (P irreducible), especially: $[K(\alpha): K]=\operatorname{deg}(P)$.
Application 33. Let L / K be an extension of degree m and $P \in K[X]$ of degree n such that $\operatorname{gcd}(n, m)=1$. If P is irreducible over K then P is irreducible over L.

Example 34. The polynomial $X^{3}-2$ has two distincts, although isomorphic, rupture fields over $\mathbb{Q}: L_{1}=\mathbb{Q}(\sqrt[3]{2}) \subset$ \mathbb{R} and $L_{2}=\mathbb{Q}(j \sqrt[3]{2}) \not \subset \mathbb{R}$.

Example 35. If K is finite and $P \in K[X]$ is irreducible, then the rupture field of P over K has $|K|^{\operatorname{deg}(P)}$ elements.
Definition 36. Let K be a field and $P \in K[X]$ be a non constant polynomial. A splitting field of P over K is an extension L / K such that P splits over L, i.e. $P=$ $\prod_{i}\left(X-a_{i}\right)^{m_{i}}$ with $a_{i} \in L$, and such that $L=K\left(a_{1}, \ldots, a_{n}\right)$.
Example 37. For examples:

- \mathbb{Q}_{n} is a splitting field over \mathbb{Q} of Φ_{n}.
- $\mathbb{Q}(j, \sqrt[3]{2})$ is a splitting field of $X^{3}-2$ over \mathbb{Q}.

Remark 38. If $\operatorname{deg}(P)=2$ and P is irreducible, then a rupture field is a splitting field.

Theorem 39. A splitting field $(S F)$ exists and all splitting fields are K-isomorphic. Moreover, $[S F: K] \leqslant$ $(\operatorname{deg}(P))!$.
Remark 40. A splitting field of P over K is the smallest extension L / K that contains all roots of P.

2.2 Application : the finite fields

Proposition 41. Let K be a finite field and $\operatorname{char}(K)$ be the characteristic of K. Then, $\operatorname{char}(K)=p$, where p is a prime, and there exists an integer n such that $|K|=p^{n}$.

Remark 42. There is no finite field with exactly 6 elements.
Proposition 43. Let K be a finite field, $\operatorname{char}(K)=p$. The map $\phi_{p}: K \rightarrow K$ defined by $\phi_{p}(x)=x^{p}$ is a field morphism called Frobenius morphism. As K is finite, ϕ_{p} is an automorphism.

Theorem 44. Let p be a prime, n be a positive integer Let $q=p^{n}$. Then:

- A field K with q elements does exist. K is the splitting field of the polynomial $X^{q}-X$ over \mathbb{F}_{p}.
- K is unique up to isomorphism and called \mathbb{F}_{q}.

Example 45. Let $P=X^{2}+1$ and $Q=X^{2}+X+2 . \mathbb{F}_{9}$ is isomorphic to the field defined by $\mathbb{F}_{3}[X] /(P)$ and also isomorphic to $\mathbb{F}_{3}[X] /(Q)$.

Proposition 46. $\mathbb{F}_{p^{r}}$ is a subfield of $\mathbb{F}_{p^{d}}$ if and only if r divides d.
Example 47. The subfields of \mathbb{F}_{729} are $\mathbb{F}_{3}, \mathbb{F}_{9}$ and \mathbb{F}_{27}.
Counterexample 48. \mathbb{F}_{8} is not a subfield of \mathbb{F}_{16}.
Proposition 49. $\left(\mathbb{F}_{q}^{*}, \times\right)$ is a cyclic group, isomorphic to $\mathbb{Z} /(q-1) \mathbb{Z}$.

Remark 50. Every subgroup of \mathbb{F}_{q}^{*} is also cyclic.
Example 51. Let $\alpha=\bar{X}^{P}$ and $\beta=\bar{X}^{Q}$ be the classes of X in $\mathbb{F}_{3}[X] /(P)$ and in $\mathbb{F}_{3}[X] /(Q)$. Then:

- $\alpha+1$ is a generator of \mathbb{F}_{9}^{*},
- β is a generator of \mathbb{F}_{9}^{*},
- The isomorphism between $\mathbb{F}_{3}[X] /(P)$ and $\mathbb{F}_{3}[X] /(Q)$ is given by $\phi: \alpha+1 \mapsto \beta$.
Remark 52. In general it is very hard to find a generator of \mathbb{F}_{q}^{*}. Besides, there is no canonical isomorphism between two finite fields of same cardinal.

2.3 Algebraic closure

Definition 53. Let K be a field, K is an algebraically closed field if every polynomial over K is splitted.

Proposition 54. There is equivalence between:

- K is algebraically closed,
- every irreducible polynomial has degree one,
- every non constant polynomial has at least one root,
- every algebraic extension of K is trivial.

Proposition 55. Let K be a field, the set of the algebraic elements over K is algebraically closed.

Example 56. \mathbb{C} is algebraically closed.
Counterexample 57. \mathbb{Q} and the set of the real algebraic elements over \mathbb{Q} are not algebraically closed.

Counterexample 58. A finite field cannot be algebraically closed.

Definition 59. Let K be a field, an algebraic closure of K is an algebraically closed extension.

Example 60. \mathbb{C} is an algebraic closure of \mathbb{R}, more generally the set of the algebraic elements over K is an algebraic closure of K.

Theorem 61 (Steinitz). Every field K has an algebraic closure, and it is unique up to isomorphism (admitted).

Application 62 (Dunford). Let K be a field, n a non zero integer and $M \in \mathcal{M}_{n}(K)$. There exist $D \in \mathcal{M}_{n}(K)$ diagonalizable over an extension of K and $N \in \mathcal{M}_{n}(K)$ nilpotent such that:

- $D N=N D$,
- $M=D+N$,
- $D, N \in K[M]$.

3 Two applications

3.1 Geometric constructions

Definition 63. Let $C \subset \mathbb{C}$ be a set of points. A line is constructible from C if it passes through two distinct points of C. A circle is constructible from C if its center is a point of C, and if its radius is the distance between two points of C.

Definition 64. Let $C_{0}=\{0,1\} \subset \mathbb{C}$. We define recursively C_{n+1} as the union of C_{n} with the set of all points that are intersection of either

- two constructible lines from C_{n},
- a constructible line and a constructible circle from C_{n},
- two constructible circles from C_{n}.

The set $C=\cup_{n \in \mathbb{N}} C_{n}$ is called the set of constructible points.

Definition 65. A complex number is constructible if it is the affix of a constructible point. We assimilate the set of constructible complex numbers with the set C of constructible points.
A real number is constructible if it is one of the coordinates of a constructible point. The set of constructible real numbers is denoted $C_{\mathbb{R}}$.
Remark 66. - Given a constructible line D and a constructible point A, it is possible to draw the line that is parallel or perpendicular to D and that passes through A.

- Given two constructible points A and B, it is possible to draw the perpendicular bisector of the segment $[A B]$.
- A complex number $z=x+i y$ is constructible if and only if x and y are constructible real numbers.
Proposition 67. If $x \in \mathbb{R}_{+}$is constructible, then \sqrt{x} is constructible.

Theorem 68. The set $C_{\mathbb{R}}$ of constructible numbers is a subfield of \mathbb{R}.

Remark 69. As \mathbb{Q} is the smallest subfield of \mathbb{R}, then $\mathbb{Q} \subset C_{\mathbb{R}}$.
Example 70. The numbers 7, $\frac{-2}{3}, \frac{1+\sqrt{5}}{2}, \sqrt[4]{13}$ are constructible.

Theorem 71 (Wantzel). Let $x \in \mathbb{R}$. Then x is constructible if and only if there exists $p \geqslant 1$ and a sequence of subfields $K_{1} \subset \ldots \subset K_{p}$ of \mathbb{R} such that

- $K_{1}=\mathbb{Q}$,
- $\left[K_{i+1}: K_{i}\right]=2$ for all $1 \leqslant i \leqslant p-1$,
- $x \in K_{p}$.

Corollary 72. Every constructible number is algebraic over \mathbb{Q}. Moreover, there exists $p \in \mathbb{N}$ such that its degree is 2^{p}.

Application 73. The following constructions are impossible:

- squarring the circle because π is not a constructible number,
- doubling the cube because $\sqrt[3]{2}$ is not a constructible number.

Definition 74. An angle θ is constructible if $e^{i \theta}($ or $\cos (\theta)$ or $\sin (\theta))$ is constructible. The n-sided regular polygon is constructible if $\frac{2 \pi}{n}$ is constructible.

Lemma 75. If $\operatorname{gcd}(m, n)=1$, then the $m n$-sided regular polygon is constructible if and only if the m-sided and the n-sided regular polygons are constructible.

Theorem 76 (Gauss-Wantzel). We have :

- For all $\alpha \in \mathbb{N}, \frac{2 \pi}{2^{\alpha}}$ is constructible.
- Let $p \geqslant 3$ be a prime, and $\alpha \in \mathbb{N}$. Then $\frac{2 \pi}{p^{\alpha}}$ is constructible if and only if $\alpha=1$ and p is a Fermat prime number.

Example 77. The n-sided regular polygon is constructible for $n=3,4,5,6,15,17,257$.
The n-sided regular polygon is not constructible for $n=$ 7, 9, 11, 100 .

Example 78. See the appendix for the construction of the regular pentagon.

3.2 Building error correcting codes

Definition 79. A binary cyclic code of block length n (odd) is the set of the polynomials $c \in \mathbb{F}_{2}[X]$ of degree lower than $n-1$ such that $c(\zeta)=0$ for all ζ in a set \mathcal{S} of nth roots of unity over an extension of \mathbb{F}_{2}.

Proposition 80. Let \mathcal{C} be a code defined by the set $\mathcal{S}=\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}$ of nth roots of unity. If $P=$ $\operatorname{lcm}\left(\mu_{\mathbb{F}_{2}, \zeta_{1}}, \ldots, \mu_{\mathbb{F}_{2}, \zeta_{k}}\right)$ then $\mathcal{C}=P \times \mathbb{F}_{2}[X] \bmod \left(X^{n}\right)$. Then P is called the generator polynomial of \mathcal{C} and $P \mid X^{n}-1$.

Example 81. Let $\zeta=\bar{X}$ in $\mathbb{F}_{2}[X] /\left(X^{3}+X+1\right)$. The code defined by the set $\mathcal{S}=\{\zeta\}$ is $\mathcal{C}_{1}=P \times \mathbb{F}_{2}[X] \bmod X^{7}$ where $P=X^{3}+X+1$.

Definition 82. Let s be a non-zero integer, $\delta>1$ and $n=2^{s}-1$. Let $\zeta \in \mathbb{F}_{2^{s}}$ be a primitive root of unity. The BCH code of distance d and root ζ is the binary cyclic code defined by the set of roots $\mathcal{S}=\left\{\zeta, \zeta^{2}, \ldots, \zeta^{\delta-2}\right\}$.

Proposition 83. Let s be a non-zero integer and $n=$ $2^{s}-1$.

$$
X^{n}-1=\prod_{d \mid n} \Phi_{d}(X)
$$

and Φ_{n} is the product of irreducible polynomials of degree s over \mathbb{F}_{2}.

Application 84. In the same context, let P be a irreducible factor of Φ_{n} over \mathbb{F}_{2} then $\bar{X} \in \mathbb{F}_{2}[X] /(P)$ is a primitive root of unity, its minimal polynomial is P : then BCH codes can be built.

