125 - Fields extensions. Examples and applications.

1 On fields extensions

1.1 About extensions

Definition 1. Let K be a field, a field L is a field exten-
sion of K if K C L and the field operations over K and
L are the same. We say that K is a subfield of L and we
denote L/K.

Example 2. Q € R C C and then R/Q, C/Q and C/R
are fields extensions.

Definition 3. Let L/KW be a field extension and S a
subset of L, we define K(S) as the smallest extension of K
which contains S.

Example 4. For example :
e QW2)={a+bvV2|a,beR}
o C=R(7)

e The nth cyclotomic field is the smallest extension of
Q wich contains the set of the nth roots of unity :

Qn = Q({e™*/" | k €0,..,n}).

Proposition 5. If L is an extension of K then L is a K-
vectorial space.

Definition 6. Let L/K be an extension field, the degree
[L : K] of this extension is the dimension of L as a K-
vectorial space.

Example 7. [Q(v2):Q] =2, [R:Q] = o0, [C,R] =2

Lemma 8 (Telescopic basis). Let M/L and L/K two
fields extensions. Then [M : K| = [M : L][L : K].

Example 9. X3 + X + 1 is irreducible over Fy and Fyg.

1.2 Linear algebra and fields exten-
sions

Proposition 10. Let M € M,, ,(K) C My, (L) where
L/K is a field extension, the rank of M as an element of

M n(K) is the same as the rank of M as an element of
Mo (L). If m = n, the characteristic and minimal poly-
nomials of M are the same in K and L.

Corollary 11. Let ug be the linear mapping associated
with M over K and uy over L then,

e ug is injective if and only if uy, is injective
e wu is surjective if and only if uy, is surjective.

Application 12. (9 ') is diagonalizable over C but not

over R.

Proposition 13. The invariants of tensors are invariant
by fields extension.

Application 14. Let L/K be a field extension and
M,N € M, (K). M and N are similar over K if and only
if they are similar over L.

1.3 Algebraic and transcendental
elements

Definition 15. If L/K is a field extension, an element a
of L is called an algebraic element over K if a is a root of
a non-zero polynomial of K[X]. A non-algebraic element is
called transcendental.

Example 16. /2 € R is algebraic over Q but 7 and e are
not.

Definition 17. Let a € L be an algebraic element over K,
the set of annulator polynomials of a is a non-zero ideal of
K[X]. The unique monic generator of this ideal is called
the minimal polynomial of a and is represented by (i q.

Example 18. pup; = X?+1, up; = X?+ X +1, Ho,vz =
X2-2

Proposition 19. The minimal polynomial of a € L over
K is irreducible over K.

Definition 20. Let L/K be a field extension and a € L
algebraic over K. The degree of a as an algebraic element
is the degree of ik 4.

Theorem 21. Let L/K a field extension and a € L. Then
a is algebraic over K if and only if K(a) = K|[a] if and only
if the K-vectorial space K[a] has finite dimension.

Proposition 22. If the degree of a is n € N, then [K(a) :
K] =n.

Theorem 23. Let L/K be a field extension, the set of al-
gebraic elements of L over K is a field.

Theorem 24 (Primitive element theorem). If
char(K) = 0 and if L/K is a field extension of finite
degree, then there exists a € L such that L = K (a).

Definition 25. The extension L/K is algebraic if every
element of L is algebraic over K.

Example 26. Extensions of finite degree are algebraic.

Proposition 27. Let L/K an extension. Then L is al-
gebraic and finite if and only if there exist aq,..,a,, € L
algebraic over K such that L = K(ay, ..., an).

Proposition 28. Let L/K be a field extension, and a,b €
L be two algebraic elements. If pux, = pkp, then there
exists a field isomorphism f : K(a) — K(b) such that
fla)=band Vz € K, f(z) = x.

Example 29. Let p be a prime number and w be a pth

root of unity. Then for all 1 < k < p—1, there exists a field

isomorphism oy, : Q(w) — Q(w*) such that oy (w) = w*.



2 Building extensions

2.1 Rupture field and splitting field

Definition 30. Let K be a field and P € K[X]| be a non
constant (irreducible) polynomial. A rupture field of P over
K is an extension L/K such that P has a root o € L and
L =K(a).

Example 31. For examples:
e Q, is a rupture field over Q of ®,,.
« Q(¥/2) is a rupture field of X3 — 2 over Q.
o C is a rupture field of X2 + 1 over R.
Theorem 32. There exists a rupture field and all rupture

fields are isomorphic to K[X]/(P) (P irreducible), espe-
cially: [K(«): K] = deg(P).

Application 33. Let L/K be an extension of degree m
and P € K[X] of degree n such that ged(n,m) =1. If P is
irreducible over K then P is irreducible over L.

Example 34. The polynomial X3 — 2 has two distincts,
although isomorphic, rupture fields over Q : L; = Q(+/2) C
R and Ly = Q(5v/2) ¢ R.

Example 35. If K is finite and P € K[X] is irreducible,
then the rupture field of P over K has |K|%¢(P) elements.

Definition 36. Let K be a field and P € K[X] be a
non constant polynomial. A splitting field of P over K
is an extension L/K such that P splits over L, i.e. P =
[[;(X —a;)™ with a; € L, and such that L = K(ax, ..., ap).

Example 37. For examples:
e Q, is a splitting field over Q of ®,,.
o Q(j,V/2) is a splitting field of X3 — 2 over Q.

Remark 38. If deg(P) = 2 and P is irreducible, then a
rupture field is a splitting field.

Theorem 39. A splitting field (SF) exists and all split-
ting fields are K-isomorphic. Moreover, [SF : K] <

(deg(P))!.

Remark 40. A splitting field of P over K is the smallest
extension L/K that contains all roots of P.

2.2 Application : the finite fields

Proposition 41. Let K be a finite field and char(K) be
the characteristic of K. Then, char(K) = p, where p is a
prime, and there exists an integer n such that |K| = p™.

Remark 42. There is no finite field with exactly 6 ele-
ments.

Proposition 43. Let K be a finite field, char(K) = p.
The map ¢, : K — K defined by ¢,(x) = 2? is a field
morphism called Frobenius morphism. As K is finite, ¢, is
an automorphism.

Theorem 44. Let p be a prime, n be a positive integer.
Let ¢ = p™. Then:

e A field K with ¢ elements does exist. K is the split-
ting field of the polynomial X7 — X over Fp,.

» K is unique up to isomorphism and called FF,.

Example 45. Let P=X?+1and Q = X?>+ X +2. Fy
is isomorphic to the field defined by F3[X]/(P) and also
isomorphic to F3[X]/(Q).

Proposition 46. I, is a subfield of F,q if and only if r
divides d.

Example 47. The subfields of Fro9 are F3, Fg and For.
Counterexample 48. Fg is not a subfield of Fyg.

Proposition 49. (F}, x) is a cyclic group, isomorphic to
Z/(g - 1)Z.

Remark 50. Every subgroup of Fj is also cyclic.
Example 51. Let a = X" and 8= x° be the classes of
X in F3[X]/(P) and in F3[X]/(Q). Then:

e «+1is a generator of F§,

o [ is a generator of Fg,

o The isomorphism between F3[X]/(P)
F5[X]/(Q) is given by ¢ : v + 1 +— .

and

Remark 52. In general it is very hard to find a generator
of ;. Besides, there is no canonical isomorphism between
two finite fields of same cardinal.

2.3 Algebraic closure

Definition 53. Let K be a field, K is an algebraically
closed field if every polynomial over K is splitted.

Proposition 54. There is equivalence between:
o K is algebraically closed,
e every irreducible polynomial has degree one,
e every non constant polynomial has at least one root,

e every algebraic extension of K is trivial.

Proposition 55. Let K be a field, the set of the algebraic
elements over K is algebraically closed.

Example 56. C is algebraically closed.

Counterexample 57. Q and the set of the real algebraic
elements over Q are not algebraically closed.

Counterexample 58. A finite field cannot be alge-
braically closed.

Definition 59. Let K be a field, an algebraic closure of
K is an algebraically closed extension.

Example 60. C is an algebraic closure of R, more gener-
ally the set of the algebraic elements over K is an algebraic
closure of K.

Theorem 61 (Steinitz). Every field K has an algebraic
closure, and it is unique up to isomorphism (admitted).

Application 62 (Dunford). Let K be a field, n a non
zero integer and M € M, (K). There exist D € M,,(K)
diagonalizable over an extension of K and N € M, (K)
nilpotent such that:

« DN =ND,
« M=D+N,

« D,N e K[M].



3 'Two applications

3.1 Geometric constructions

Definition 63. Let C C C be a set of points. A line is con-
structible from C' if it passes through two distinct points of
C. A circle is constructible from C' if its center is a point
of C, and if its radius is the distance between two points of

C.

Definition 64. Let Cy = {0,1} € C. We define recur-
sively C),+1 as the union of C,, with the set of all points
that are intersection of either

e two constructible lines from C,,,

e a constructible line and a constructible circle from
Ch,

e two constructible circles from C,,.

The set C = UpenCy is called the set of constructible
points.

Definition 65. A complex number is constructible if it is
the affix of a constructible point. We assimilate the set
of constructible complex numbers with the set C of con-
structible points.

A real number is constructible if it is one of the coordi-
nates of a constructible point. The set of constructible real
numbers is denoted Ckg.

Remark 66. e Given a constructible line D and a
constructible point A, it is possible to draw the line
that is parallel or perpendicular to D and that passes
through A.

e Given two constructible points A and B, it is pos-
sible to draw the perpendicular bisector of the seg-
ment [AB].

e A complex number z = x 4+ iy is constructible if and
only if x and y are constructible real numbers.

Proposition 67. If z € R, is constructible, then /z is
constructible.

Theorem 68. The set Cr of constructible numbers is a
subfield of R.

Remark 69. As Q is the smallest subfield of R, then

Q c Crg.
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Example 70. The numbers 7, =2, V13 are con-

structible.

Theorem 71 (Wantzel). Let x € R. Then x is con-
structible if and only if there exists p > 1 and a sequence
of subfields K; C ... C K, of R such that

e Kl:Q7
o [Kip1:K;]=2foralll<i<p-—1,

e v K,

Corollary 72. Every constructible number is algebraic
over Q. Moreover, there exists p € N such that its degree
is 2P,

Application 73. The following constructions are impos-
sible:

e squarring the circle because 7 is not a constructible
number,

e doubling the cube because /2 is not a constructible
number.

Definition 74. An angle 6 is constructible if ? (or cos()
or sin(@)) is constructible. The n-sided regular polygon is
constructible if 2% is constructible.

Lemma 75. If ged(m,n) = 1, then the mn-sided regular
polygon is constructible if and only if the m-sided and the
n-sided regular polygons are constructible.

Theorem 76 (Gauss-Wantzel). We have :

e ForallaeN, 2z

, 5a 1s constructible.

™

e Let p > 3 be a prime, and « € N. Then ,2;7 is con-
structible if and only if &« = 1 and p is a Fermat
prime number.

Example 77. The n-sided regular con-
structible for n = 3,4,5,6,15,17,257.
The n-sided regular polygon is not constructible for n =

7,9, 11, 100.

polygon is

Example 78. See the appendix for the construction of the
regular pentagon.

3.2 Building error correcting codes

Definition 79. A binary cyclic code of block length n
(odd) is the set of the polynomials ¢ € Fy[X] of degree
lower than n — 1 such that ¢(¢) = 0 for all ¢ in a set S of
nth roots of unity over an extension of Fs.

Proposition 80. Let C be a code defined by the set
S = {¢,., ¢} of nth roots of unity. If P =
lem(pr, ¢ys - Ry ¢, ) then C = PxF3[X] mod (X™). Then
P is called the generator polynomial of C and P|X™ — 1.

Example 81. Let ¢ = X in Fy[X]/(X3 + X +1). The
code defined by the set S = {¢}is C; = PxF3[X] mod X7
where P = X3 + X + 1.

Definition 82. Let s be a non-zero integer, 6 > 1 and
n =2° —1. Let ( € Fys be a primitive root of unity. The
BCH code of distance d and root ( is the binary cyclic code
defined by the set of roots S = {¢,¢?, ..., (%72},

Proposition 83. Let s be a non-zero integer and n =
2% — 1.
X" —1=[]eaX)
d|

and ®,, is the product of irreducible polynomials of degree
s over [Fs.

Application 84. In the same context, let P be a irre-
ducible factor of ®,, over Fy then X € Fo[X]/(P) is a prim-
itive root of unity, its minimal polynomial is P : then BCH
codes can be built.
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