
125 - Fields extensions. Examples and applications.
1 On fields extensions
1.1 About extensions
Definition 1. Let K be a field, a field L is a field exten-
sion of K if K ⊂ L and the field operations over K and
L are the same. We say that K is a subfield of L and we
denote L/K.

Example 2. Q ⊂ R ⊂ C and then R/Q, C/Q and C/R
are fields extensions.

Definition 3. Let L/KW be a field extension and S a
subset of L, we define K(S) as the smallest extension of K
which contains S.

Example 4. For example :

• Q(
√
2) = {a+ b

√
2 | a, b ∈ R}

• C = R(i)

• The nth cyclotomic field is the smallest extension of
Q wich contains the set of the nth roots of unity :
Qn = Q({ei2kπ/n | k ∈ 0, .., n}).

Proposition 5. If L is an extension of K then L is a K-
vectorial space.

Definition 6. Let L/K be an extension field, the degree
[L : K] of this extension is the dimension of L as a K-
vectorial space.

Example 7. [Q(
√
2) : Q] = 2, [R : Q] = ∞, [C,R] = 2

Lemma 8 (Telescopic basis). Let M/L and L/K two
fields extensions. Then [M : K] = [M : L][L : K].

Example 9. X3 +X + 1 is irreducible over F2 and F16.

1.2 Linear algebra and fields exten-
sions

Proposition 10. Let M ∈ Mm,n(K) ⊂ Mm,n(L) where
L/K is a field extension, the rank of M as an element of

Mm,n(K) is the same as the rank of M as an element of
Mm,n(L). If m = n, the characteristic and minimal poly-
nomials of M are the same in K and L.

Corollary 11. Let uK be the linear mapping associated
with M over K and uL over L then,

• uK is injective if and only if uL is injective
• uK is surjective if and only if uL is surjective.

Application 12.
(
0 −1
1 0

)
is diagonalizable over C but not

over R.

Proposition 13. The invariants of tensors are invariant
by fields extension.

Application 14. Let L/K be a field extension and
M,N ∈ Mn(K). M and N are similar over K if and only
if they are similar over L.

1.3 Algebraic and transcendental
elements

Definition 15. If L/K is a field extension, an element a
of L is called an algebraic element over K if a is a root of
a non-zero polynomial of K[X]. A non-algebraic element is
called transcendental.

Example 16.
√
2 ∈ R is algebraic over Q but π and e are

not.

Definition 17. Let a ∈ L be an algebraic element over K,
the set of annulator polynomials of a is a non-zero ideal of
K[X]. The unique monic generator of this ideal is called
the minimal polynomial of a and is represented by µK,a.

Example 18. µR,i = X2 +1, µR,j = X2 +X +1, µQ,
√
2 =

X2 − 2

Proposition 19. The minimal polynomial of a ∈ L over
K is irreducible over K.

Definition 20. Let L/K be a field extension and a ∈ L
algebraic over K. The degree of a as an algebraic element
is the degree of µK,a.

Theorem 21. Let L/K a field extension and a ∈ L. Then
a is algebraic over K if and only if K(a) = K[a] if and only
if the K-vectorial space K[a] has finite dimension.

Proposition 22. If the degree of a is n ∈ N, then [K(a) :
K] = n.

Theorem 23. Let L/K be a field extension, the set of al-
gebraic elements of L over K is a field.

Theorem 24 (Primitive element theorem). If
char(K) = 0 and if L/K is a field extension of finite
degree, then there exists a ∈ L such that L = K(a).

Definition 25. The extension L/K is algebraic if every
element of L is algebraic over K.

Example 26. Extensions of finite degree are algebraic.

Proposition 27. Let L/K an extension. Then L is al-
gebraic and finite if and only if there exist a1, .., an ∈ L
algebraic over K such that L = K(a1, ..., an).

Proposition 28. Let L/K be a field extension, and a, b ∈
L be two algebraic elements. If µK,a = µK,b, then there
exists a field isomorphism f : K(a) → K(b) such that
f(a) = b and ∀x ∈ K, f(x) = x.

Example 29. Let p be a prime number and ω be a pth
root of unity. Then for all 1 ⩽ k ⩽ p−1, there exists a field
isomorphism σk : Q(ω) → Q(ωk) such that σk(ω) = ωk.
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2 Building extensions
2.1 Rupture field and splitting field
Definition 30. Let K be a field and P ∈ K[X] be a non
constant (irreducible) polynomial. A rupture field of P over
K is an extension L/K such that P has a root α ∈ L and
L = K(α).

Example 31. For examples:
• Qn is a rupture field over Q of Φn.
• Q( 3

√
2) is a rupture field of X3 − 2 over Q.

• C is a rupture field of X2 + 1 over R.

Theorem 32. There exists a rupture field and all rupture
fields are isomorphic to K[X]/(P ) (P irreducible), espe-
cially: [K(α) : K] = deg(P ).

Application 33. Let L/K be an extension of degree m
and P ∈ K[X] of degree n such that gcd(n,m) = 1. If P is
irreducible over K then P is irreducible over L.

Example 34. The polynomial X3 − 2 has two distincts,
although isomorphic, rupture fields over Q : L1 = Q( 3

√
2) ⊂

R and L2 = Q(j 3
√
2) 6⊂ R.

Example 35. If K is finite and P ∈ K[X] is irreducible,
then the rupture field of P over K has |K|deg(P ) elements.

Definition 36. Let K be a field and P ∈ K[X] be a
non constant polynomial. A splitting field of P over K
is an extension L/K such that P splits over L, i.e. P =∏

i(X−ai)
mi with ai ∈ L, and such that L = K(a1, ..., an).

Example 37. For examples:
• Qn is a splitting field over Q of Φn.
• Q(j, 3

√
2) is a splitting field of X3 − 2 over Q.

Remark 38. If deg(P ) = 2 and P is irreducible, then a
rupture field is a splitting field.

Theorem 39. A splitting field (SF ) exists and all split-
ting fields are K-isomorphic. Moreover, [SF : K] ⩽
(deg(P ))!.

Remark 40. A splitting field of P over K is the smallest
extension L/K that contains all roots of P .

2.2 Application : the finite fields
Proposition 41. Let K be a finite field and char(K) be
the characteristic of K. Then, char(K) = p, where p is a
prime, and there exists an integer n such that |K| = pn.

Remark 42. There is no finite field with exactly 6 ele-
ments.

Proposition 43. Let K be a finite field, char(K) = p.
The map ϕp : K → K defined by ϕp(x) = xp is a field
morphism called Frobenius morphism. As K is finite, ϕp is
an automorphism.

Theorem 44. Let p be a prime, n be a positive integer.
Let q = pn. Then:

• A field K with q elements does exist. K is the split-
ting field of the polynomial Xq −X over Fp.

• K is unique up to isomorphism and called Fq.

Example 45. Let P = X2 + 1 and Q = X2 +X + 2. F9

is isomorphic to the field defined by F3[X]/(P ) and also
isomorphic to F3[X]/(Q).

Proposition 46. Fpr is a subfield of Fpd if and only if r
divides d.

Example 47. The subfields of F729 are F3, F9 and F27.

Counterexample 48. F8 is not a subfield of F16.

Proposition 49. (F∗
q ,×) is a cyclic group, isomorphic to

Z/(q − 1)Z.

Remark 50. Every subgroup of F∗
q is also cyclic.

Example 51. Let α = X
P and β = X

Q be the classes of
X in F3[X]/(P ) and in F3[X]/(Q). Then:

• α+ 1 is a generator of F∗
9,

• β is a generator of F∗
9,

• The isomorphism between F3[X]/(P ) and
F3[X]/(Q) is given by ϕ : α+ 1 7→ β.

Remark 52. In general it is very hard to find a generator
of F∗

q . Besides, there is no canonical isomorphism between
two finite fields of same cardinal.

2.3 Algebraic closure
Definition 53. Let K be a field, K is an algebraically
closed field if every polynomial over K is splitted.

Proposition 54. There is equivalence between:

• K is algebraically closed,

• every irreducible polynomial has degree one,

• every non constant polynomial has at least one root,

• every algebraic extension of K is trivial.

Proposition 55. Let K be a field, the set of the algebraic
elements over K is algebraically closed.

Example 56. C is algebraically closed.

Counterexample 57. Q and the set of the real algebraic
elements over Q are not algebraically closed.

Counterexample 58. A finite field cannot be alge-
braically closed.

Definition 59. Let K be a field, an algebraic closure of
K is an algebraically closed extension.

Example 60. C is an algebraic closure of R, more gener-
ally the set of the algebraic elements over K is an algebraic
closure of K.

Theorem 61 (Steinitz). Every field K has an algebraic
closure, and it is unique up to isomorphism (admitted).

Application 62 (Dunford). Let K be a field, n a non
zero integer and M ∈ Mn(K). There exist D ∈ Mn(K)
diagonalizable over an extension of K and N ∈ Mn(K)
nilpotent such that:

• DN = ND,

• M = D +N ,

• D,N ∈ K[M ].
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3 Two applications
3.1 Geometric constructions
Definition 63. Let C ⊂ C be a set of points. A line is con-
structible from C if it passes through two distinct points of
C. A circle is constructible from C if its center is a point
of C, and if its radius is the distance between two points of
C.

Definition 64. Let C0 = {0, 1} ⊂ C. We define recur-
sively Cn+1 as the union of Cn with the set of all points
that are intersection of either

• two constructible lines from Cn,

• a constructible line and a constructible circle from
Cn,

• two constructible circles from Cn.

The set C = ∪n∈NCn is called the set of constructible
points.

Definition 65. A complex number is constructible if it is
the affix of a constructible point. We assimilate the set
of constructible complex numbers with the set C of con-
structible points.
A real number is constructible if it is one of the coordi-
nates of a constructible point. The set of constructible real
numbers is denoted CR.

Remark 66. • Given a constructible line D and a
constructible point A, it is possible to draw the line
that is parallel or perpendicular to D and that passes
through A.

• Given two constructible points A and B, it is pos-
sible to draw the perpendicular bisector of the seg-
ment [AB].

• A complex number z = x+ iy is constructible if and
only if x and y are constructible real numbers.

Proposition 67. If x ∈ R+ is constructible, then
√
x is

constructible.

Theorem 68. The set CR of constructible numbers is a
subfield of R.

Remark 69. As Q is the smallest subfield of R, then
Q ⊂ CR.

Example 70. The numbers 7, −2
3 , 1+

√
5

2 , 4
√
13 are con-

structible.

Theorem 71 (Wantzel). Let x ∈ R. Then x is con-
structible if and only if there exists p ⩾ 1 and a sequence
of subfields K1 ⊂ ... ⊂ Kp of R such that

• K1 = Q,

• [Ki+1 : Ki] = 2 for all 1 ⩽ i ⩽ p− 1,

• x ∈ Kp.

Corollary 72. Every constructible number is algebraic
over Q. Moreover, there exists p ∈ N such that its degree
is 2p.

Application 73. The following constructions are impos-
sible:

• squarring the circle because π is not a constructible
number,

• doubling the cube because 3
√
2 is not a constructible

number.

Definition 74. An angle θ is constructible if eiθ (or cos(θ)
or sin(θ)) is constructible. The n-sided regular polygon is
constructible if 2π

n is constructible.

Lemma 75. If gcd(m,n) = 1, then the mn-sided regular
polygon is constructible if and only if the m-sided and the
n-sided regular polygons are constructible.

Theorem 76 (Gauss-Wantzel). We have :

• For all α ∈ N, 2π
2α is constructible.

• Let p ⩾ 3 be a prime, and α ∈ N. Then 2π
pα is con-

structible if and only if α = 1 and p is a Fermat
prime number.

Example 77. The n-sided regular polygon is con-
structible for n = 3, 4, 5, 6, 15, 17, 257.
The n-sided regular polygon is not constructible for n =
7, 9, 11, 100.

Example 78. See the appendix for the construction of the
regular pentagon.

3.2 Building error correcting codes
Definition 79. A binary cyclic code of block length n
(odd) is the set of the polynomials c ∈ F2[X] of degree
lower than n − 1 such that c(ζ) = 0 for all ζ in a set S of
nth roots of unity over an extension of F2.

Proposition 80. Let C be a code defined by the set
S = {ζ1, ..., ζk} of nth roots of unity. If P =
lcm(µF2,ζ1 , ..., µF2,ζk) then C = P×F2[X] mod (Xn). Then
P is called the generator polynomial of C and P |Xn − 1.

Example 81. Let ζ = X in F2[X]/(X3 + X + 1). The
code defined by the set S = {ζ} is C1 = P×F2[X] mod X7

where P = X3 +X + 1.

Definition 82. Let s be a non-zero integer, δ > 1 and
n = 2s − 1. Let ζ ∈ F2s be a primitive root of unity. The
BCH code of distance d and root ζ is the binary cyclic code
defined by the set of roots S = {ζ, ζ2, ..., ζδ−2}.

Proposition 83. Let s be a non-zero integer and n =
2s − 1.

Xn − 1 =
∏
d|n

Φd(X)

and Φn is the product of irreducible polynomials of degree
s over F2.

Application 84. In the same context, let P be a irre-
ducible factor of Φn over F2 then X ∈ F2[X]/(P ) is a prim-
itive root of unity, its minimal polynomial is P : then BCH
codes can be built.
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