Devoir Maison

À rendre le 27 mars 2024.

Vous pouvez le faire seul·e ou à deux. Dans ce cas une personne rédigera l'exercice 1 et l'exercice 2 partie II, et l'autre l'exercice 2 partie I et l'exercice 3.

La qualité de la rédaction sera prise en compte.

Le barème est indiqué en rouge ci-dessous. Chaque exercice contenait également une note sur 2 pour la rédaction.

Exercice 1.

Soit $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels. Pour $n \in \mathbb{N}$, on considère $\mathbb{R}_n[X]$ l'ensemble des polynômes de degré au plus n. Soit $P,Q \in \mathbb{R}[X]$ des polynômes de degrés respectifs p et q. On note $D = \operatorname{pgcd}(P,Q)$, et d son degré. On considère l'application

$$\varphi \mid \begin{array}{ccc} \mathbb{R}_{q-1}[X] \times \mathbb{R}_{p-1}[X] & \to & \mathbb{R}_{p+q-1}[X] \\ (U,V) & \mapsto & UP + VQ \end{array}.$$

- 1. Donner (sans justifier) une base de $\mathbb{R}_n[X]$. Déterminer (en justifiant) une base de $\mathbb{R}_{q-1}[X] \times \mathbb{R}_{p-1}[X]$.
- 2. Montrer que φ est linéaire.
- 3. Justifier que φ est bijective si et seulement si elle est injective si et seulement si elle est surjective.
- 4. Donner une condition nécessaire et suffisante sur D pour que l'application φ soit bijective.
- 5. Montrer qu'il existe $U \in \mathbb{R}_{q-1}[X]$ et $V \in \mathbb{R}_{p-1}[X]$ tels que UP + VQ = D. (La condition trouvée dans la question précédente n'est pas forcément supposée vérifiée.)
- 6. Montrer que $rg(\varphi) = p + q d$.

Solution. 1. (3 pts) Une base de $\mathbb{R}_n[X]$ est par exemple $(1, X, X^2, \dots, X^n)$.

Un élément de $\mathbb{R}_{q-1}[X] \times \mathbb{R}_{p-1}[X]$ est un couple (A,B) de polynômes, avec $A \in \mathbb{R}_{q-1}[X]$ et $B \in \mathbb{R}_{p-1}[X]$. En utilisant des bases de $\mathbb{R}_{q-1}[X]$ et $\mathbb{R}_{p-1}[X]$ on écrit $A = \sum_{i=0}^{q-1} a_i X^i$ et $B = \sum_{j=0}^{p-1} b_j X^j$, de sorte que

$$(A,B) = \sum_{i=0}^{q-1} a_i(X^i,0) + \sum_{j=0}^{p-1} b_j(0,X^j).$$

Ainsi, la famille $((X^i,0)_{0 \le i \le q-1},(0,X^j)_{0 \le j \le p-1})$ est une famille génératrice.

Montrons que c'est une famille libre. Soit $(a_0, \ldots, a_{q-1}, b_0, \ldots, b_{p-1})$ des réels tels que

$$\sum_{i=0}^{q-1} a_i(X^i, 0) + \sum_{j=0}^{p-1} b_j(0, X^j) = 0$$

et montrons que $a_0 = \cdots = a_{q-1} = b_0 = \cdots = b_{p-1} = 0$. Puisque

$$\sum_{i=0}^{q-1} a_i(X^i, 0) + \sum_{j=0}^{p-1} b_j(0, X^j) = \left(\sum_{i=0}^{q-1} a_i X^i, \sum_{j=0}^{p-1} b_j X^j\right)$$

alors cette quantité est nulle si et seulement si $\sum_{i=0}^{q-1} a_i X^i = \sum_{j=0}^{p-1} b_j X^j = 0$. Or, puisque $(1, X, \dots, X^{q-1})$ est une base de $\mathbb{R}_{q-1}[X]$, l'égalité $\sum_{i=0}^{q-1} a_i X^i = 0$ implique $a_0 = \dots = a_{q-1} = 0$. De même on a $b_0 = \dots = b_{p+1} = 0$. Donc la famille $((X^i, 0)_{0 \leqslant i \leqslant q-1}, (0, X^j)_{0 \leqslant j \leqslant p-1})$ est libre.

Puisque cette famille est libre et génératrice, c'est donc une base. (On note au passage que $\dim(\mathbb{R}_{q-1}[X] \times \mathbb{R}_{p-1}[X]) = p+q$.)

2. (2 pts) D'une part, $\varphi(0,0) = 0$. D'autre part, soit $U, U' \in \mathbb{R}_{q-1}[X], V, V' \in \mathbb{R}_{p-1}[X]$ et $\lambda \in \mathbb{R}$. On a

$$\varphi(\lambda(U, V) + (U', V')) = \varphi(\lambda U + U', \lambda V + V')$$

$$= (\lambda U + U')P + \lambda V + V')Q$$

$$= \lambda(UP + VQ) + (U'P + V'Q)$$

$$= \lambda\varphi(U, V) + \varphi(U', V').$$

Donc φ est linéaire.

- 3. (1 pt) D'après la question 1, les dimensions des espaces vectoriels de départ et d'arrivée sont finies égales (et valent p + q). Ainsi, l'application linéaire φ est bijective si et seulement si elle est injective si et seulement si elle est surjective.
- 4. (3 pts) La condition est D=1. En effet, si φ est bijective alors elle est surjective donc il existe $(U,V) \in \mathbb{R}_{q-1}[X] \times \mathbb{R}_{p-1}[X]$ tel que UP + VQ = 1. Par théorème de Bézout, cela signifie que D=1.

Réciproquement, supposons D=1 et soit $(U,V) \in \mathbb{R}_{q-1}[X] \times \mathbb{R}_{p-1}[X]$ tels que UP+VQ=0. Alors P divise VQ donc P divise V (car P et Q premiers entre eux). On a donc V=0 ou $p=\deg(P)\leqslant \deg(V)\leqslant p-1$. La deuxième possibilité étant absurde, on a V=0 puis U=0. Donc φ est injective, donc bijective par la question précédente.

5. (3 pts) Si D=1 alors φ est surjective d'après la question précédente, donc D=1 est dans l'image de φ . En général, on regarde l'application

$$\widetilde{\varphi} \mid \mathbb{R}_{q-d-1}[X] \times \mathbb{R}_{p-d-1}[X] \rightarrow \mathbb{R}_{p+q-2d-1}[X] \\ (U,V) \mapsto U\widetilde{P} + V\widetilde{Q}$$

où $P=D\widetilde{P}$ et $Q=D\widetilde{Q}$. Alors \widetilde{P} et \widetilde{Q} sont premiers entre eux donc $\widetilde{\varphi}$ est surjective d'après la question précédente, donc il existe $U\in\mathbb{R}_{p-d-1}[X]$ et $V\in\mathbb{R}_{q-d-1}[X]$ tels que $U\widetilde{P}+V\widetilde{Q}=1$. Ainsi, $DU\widetilde{P}+DV\widetilde{Q}=D$, c'est-à-dire UP+VQ=D, avec $U\in\mathbb{R}_{p-d-1}[X]\subset\mathbb{R}_{p-1}[X]$ et $V\in\mathbb{R}_{q-d-1}[X]\subset\mathbb{R}_{q-1}[X]$.

6. (3 pts) On va calculer le noyau (et sa dimension) puis utiliser le théorème du rang. En notant encore $P=D\widetilde{P}$ et $Q=D\widetilde{Q}$ on a

$$\begin{split} \varphi(U,V) &= 0 \Leftrightarrow UP + VQ = 0 \\ &\Leftrightarrow U\widetilde{P} + V\widetilde{Q} = 0 \\ &\Leftrightarrow U = A\widetilde{Q}, \ V = -A\widetilde{P} \text{ avec } A \in \mathbb{R}_{d-1}[X] \end{split}$$

car \widetilde{P} et \widetilde{Q} sont premiers entre eux et par lemme de Gauss. La restriction sur le degré de A vient de celle sur les degrés de U et V :

$$\deg(A) = \deg(U) - \deg(\widetilde{Q}) = \deg(U) - \deg(Q) + \deg(D) \leqslant q - 1 - q + d = d - 1.$$

Ainsi, $\ker(\varphi) = \{(A\widetilde{Q}, -A\widetilde{P}), A \in \mathbb{R}_{d-1}[X]\}$. L'application

$$\begin{cases}
\mathbb{R}_{d-1}[X] \to \ker(\varphi) \\
A \mapsto (A\widetilde{Q}, -A\widetilde{P})
\end{cases}$$

est donc bien définie, linéaire, surjective et injective (car si $(A\widetilde{Q}, -A\widetilde{P}) = (0,0)$ on a forcément A=0). Il en résulte que $\ker(\varphi) \simeq \mathbb{R}_{d-1}[X]$ est donc de dimension d. Comme $\mathbb{R}_{q-1}[X] \times \mathbb{R}_{p-1}[X]$ est de dimension p+q, alors par théorème du rang on a $\operatorname{rg}(\varphi) = p+q-d$.

Exercice 2.

Soit $\mathbb{R}[X]$ l'espace vectoriel des polynômes réels. On considère l'application

$$\varphi \mid \mathbb{R}[X] \rightarrow \mathbb{R}^{n+1}$$
 $P \mapsto (P(0), P(1), \dots, P(n))$

ainsi que sa restriction aux polynômes de degré au plus n:

$$f = \varphi|_{\mathbb{R}_n[X]} \colon \mathbb{R}_n[X] \to \mathbb{R}^{n+1}.$$

Partie I

- 1. Montrer que φ et f sont linéaires.
- 2. Montrer que f est injective, puis bijective.

Le but est de déterminer $g: \mathbb{R}^{n+1} \to \mathbb{R}_n[X]$ la bijection réciproque de f. Pour $0 \le i \le n$ on considère le polynôme :

$$L_i = \prod_{\substack{j=0\\j\neq i}}^n \frac{X-j}{i-j}.$$

- 3. Montrer que la famille (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$.
- 4. Quelle est l'image de la famille (L_0, \ldots, L_n) par l'application f?
- 5. En déduire l'expression de g. C'est-à-dire, étant donné $a=(a_0,\ldots,a_n)\in\mathbb{R}^{n+1}$ déterminer l'unique polynôme P=g(a) tel que f(P)=a.

Partie II

- 6. Montrer que $\ker(\varphi) = \{UA, \ U \in \mathbb{R}[X]\}$ où A est un polynôme à déterminer.
- 7. Montrer que $\mathbb{R}[X] = \mathbb{R}_n[X] \oplus \ker(\varphi)$
- 8. Montrer que $\varphi \circ g = \mathrm{id}_{\mathbb{R}^{n+1}}$. A-t-on $g \circ \varphi = \mathrm{id}_{\mathbb{R}[X]}$? Pourquoi?

- Solution. 1. (2 pts) Soit $P, Q \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$ et posons $R = \lambda P + Q$. Pour tout $x \in \mathbb{R}$, $R(x) = (\lambda P + Q)(x) = \lambda P(x) + Q(x)$. Donc $\varphi(R) = (R(0), \dots, R(n)) = (\lambda P(0) + Q(0), \dots \lambda P(n) + Q(n)) = \lambda (P(0), \dots, P(n)) + (Q(0), \dots, Q(n)) = \lambda \varphi(P) + \varphi(Q)$. Ce qui montre que φ est linéaire.
 - Soit $P, Q \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$. Comme $\lambda P + Q$ est dans $\mathbb{R}_n[X]$, on a par linéarité de φ $f(\lambda P + Q) = \varphi(\lambda P + Q) = \lambda \varphi(P) + \varphi(Q) = \lambda f(P) + f(Q)$. Donc f est linéaire¹.
 - 2. (2 pts) On montre que f est injective : si f(P) = (0, ..., 0) alors P possède n+1 racines alors qu'il est de degré au plus n, donc P = 0. Donc f est injective, et par égalité des dimensions au départ et à l'arrivée on déduit que f est bijective.
 - 3. (3 pts) D'une part $L_i \in \mathbb{R}_n[X]$ (il faut le dire !). D'autre part, on remarque que $L_i(i) = 1$ et $L_i(j) = 0$ si $j \neq i$. Ainsi, la relation $\sum_i \lambda_i L_i = 0$ évaluée en j donne $\lambda_j = 0$, ce qui montre que la famille est libre. C'est une famille libre avec n+1 éléments dans un espace de dimension n+1, donc c'est une base.

Remarque : Attention, dire qu'une famille à n+1 éléments dans un espace de dimension n+1 est génératrice est FAUX : considérer par exemple la famille (P,P,\ldots,P) où P apparaît n+1 fois. Ici c'est vraiment le fait que la famille soit libre ET qu'elle possède n+1 éléments qui permet de conclure que c'est une base.

- 4. (1 pt) On calcule rapidement $L_i(i) = 1$ et $L_i(j) = 0$ si $j \neq i$, c'est-à-dire $f(L_i) = (0, \dots, 0, 1, 0, \dots, 0)$ (le 1 est à la (i+1)-ème position). L'image de la famille (L_0, \dots, L_n) par l'application f est donc la base canonique de \mathbb{R}^{n+1} .
- 5. (2 pts) Soit $a=(a_0,\ldots,a_n)\in\mathbb{R}^{n+1}$. En notant (e_0,\ldots,e_n) la base canonique de \mathbb{R}^{n+1} , d'après la question précédente on a $e_i=f(L_i)$. Ainsi, par linéarité de f on a

$$a = \sum_{i=0}^{n} a_i e_i = \sum_{i=0}^{n} a_i f(L_i) = f\left(\sum_{i=0}^{n} a_i L_i\right).$$

Ainsi, avec $P = \sum_{i=0}^{n} a_i L_i$ on a f(P) = a. On en déduit que

$$g(a) = P = \sum_{i=0}^{n} a_i L_i.$$

Grâce aux calculs ci-dessus, on voit que $f \circ g(a) = a$, ie : $f \circ g = \mathrm{id}_{\mathbb{R}^{n+1}}$. Comme c'est une application entre espaces de dimension finie on en déduit $g \circ f = \mathrm{id}_{\mathbb{R}_n[X]}$ et g est donc bien la réciproque de f.

- 6. (2 pts) Posons $A = \prod_{i=0}^n (X-i)$. Comme pour $i=0,\ldots,n$ on a A(i)=0, tout multiple P de A a pour racine i. Donc $\varphi(P)=(0,\ldots,0)$ et P est dans le noyau de φ . Inversement, si $P \in \ker(\varphi)$, P a pour racine $0,1,\ldots,n$ donc est divisible par $X,X-1,\ldots,X-n$. Comme ces polynômes sont distincts et irréductibles, leur produit, qui est A, divise P. Donc P est multiple de A. Finalement, on a bien $\ker(\varphi) = \{UA, U \in \mathbb{R}[X]\}$.
- 7. (3 pts) Soit $P \in \mathbb{R}[X]$. D'après le théorème de la division euclidienne de P par $A = \prod_{i=0}^{n} (X i)$, il existe deux polynômes $Q, R \in \mathbb{R}[X]$ uniques tel que P = AQ + R et $\deg(R) < \deg(A) = n + 1$. Autrement dit P se décompose de façon unique en une somme P = K + R avec $R \in \mathbb{R}_n[X]$ et $K = AU \in \ker(f)$ d'après la question précédente. Donc $\mathbb{R}[X] = \mathbb{R}_n[X] \oplus \ker(f)$.

 $^{^1}$ De manière générale, la restriction d'une application linéaire à un sous-espace vectoriel est linéaire.

8. (2 pts) Pour $a \in \mathbb{R}^{n+1}$, g(a) est dans $\mathbb{R}_n[X]$. Ainsi $\varphi(g(a)) = f(g(a)) = a$ puisque g est la bijection réciproque de f. Donc $\varphi \circ g = \mathrm{id}_{\mathbb{R}^{n+1}}$.

Cependant $g \circ \varphi \neq \mathrm{id}_{\mathbb{R}[X]}$ contrairement à ce qui se serait passé en dimension finie ($\mathbb{R}[X]$ est de dimension infinie). Cela provient du fait que f, bien que surjective, n'est pas injective. On peut voir par exemple que $g \circ \varphi(A) = 0 \neq A$.

Exercice 3.

Dans cet exercice, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Soit E un \mathbb{K} -espace vectoriel. On dit que $H \subset E$ est un hyperplan de E si c'est le noyau d'une forme linéaire $\varphi \colon E \to \mathbb{K}$ non nulle.

- 1. Soit H un hyperplan de E. Montrer qu'il existe $a \in E$ tel que $E = H \oplus \text{Vect}(a)$.
- 2. Montrer que si les formes linéaires $\varphi, \psi \in : E \to \mathbb{K}$ sont telles que $\ker(\varphi) = \ker(\psi)$ alors il existe $\lambda \in \mathbb{R}$ telle que $\varphi = \lambda \psi$.
- 3. On suppose dans cette question et la suivante que $\dim(E) = n$. Montrer que la dimension d'un hyperplan est n-1.
- 4. Soit H_1, H_2 deux hyperplans distincts. Déterminer $\dim(H_1 \cap H_2)$.

Soit $n \in \mathbb{N}^*$. On considère l'espace vectoriel des matrices réelles de taille $n \times n$ que l'on note $\mathcal{M}_n(\mathbb{R})$. On définit alors l'application trace, notée tr, par :

$$\operatorname{tr} \left| egin{array}{ll} \mathfrak{N}_n(\mathbb{R}) &
ightarrow & \mathbb{R} \ M = (m_{i,j})_{1 \leqslant i,j \leqslant n} &
ightarrow & \sum_{i=0}^n m_{i,i} \end{array}
ight.$$

- 5. Montrer que l'ensemble des matrices de trace nulle forme un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. Justifier que $\dim(\mathcal{M}_n(\mathbb{R})) = n^2$ puis en déduire la dimension de l'espace des matrices de trace nulle.
- Solution. 1. (3 pts) Soit φ la forme linéaire telle que $H = \ker(\varphi)$. Comme φ est non nulle, il existe $\widetilde{a} \in E$ tel que $\varphi(\widetilde{a}) = \lambda \neq 0$. On note $a = \frac{1}{\lambda}\widetilde{a}$. Par linéarité, $\varphi(a) = \frac{1}{\lambda}\varphi(\widetilde{a}) = 1$. On vérifie alors que un vecteur $v \in E$ s'écrit : $v = (v \varphi(v)a) + \varphi(v)a$ où le premier terme est dans H et le second dans $\operatorname{Vect}(a)$. D'où $E = H + \operatorname{Vect}(a)$. Enfin on vérifie que $H \cap \operatorname{Vect}(a) = \{0\}$ pour obtenir que la somme est directe : si $\lambda a \in H$ alors $0 = \varphi(\lambda a) = \lambda.1$ et donc $\lambda a = 0$.
 - 2. (2 pts) Notons $\ker(\varphi) = H = \ker(\psi)$. Soit $v \in E$. La question 1) nous donne l'existence d'une unique paire $x \in H$ et $\mu \in \mathbb{R}$ telle que $v = x + \mu a$ où on rappelle que a est tel que $\varphi(a) = 1$. Notons $\psi(a) = \lambda$. On a alors : $\psi(v) = \psi(x + \mu a) = \mu \psi(a) = \mu \lambda = \lambda \varphi(v)$.
 - 3. (1 pt) La question 1) et la formule des dimensions pour une somme directe permettent de conclure.
 - 4. (2 pts) À nouveau en utilisant la formule des dimensions pour une somme d'espaces vectoriels on a : $\dim(H_1 \cap H_2) = \dim(H_1) + \dim(H_2) \dim(H_1 + H_2) = (n-1) + (n-1) n = n-2$. Où $\dim(H_1 + H_2) = n$ car $H_1 \neq H_2$ implique que

$$n-1=\dim(H_1)<\dim(\mathrm{Vect}(H_1\cup H_2))=\dim(H_1+H_2)\leqslant\dim(E)=n.$$

5. (3 pts) On vérifie que tr est une forme linéaire non nulle (il faut le montrer !). L'ensemble en question est un sous-espace vectoriel puisque c'est le noyau de l'application linéaire tr. Pour la dimension, on rappelle que les n^2 matrices $(M^{i,j})_{1\leqslant i,j\leqslant j}$ telles que $m^{i,j}_{k,l}=\delta_{(i,j),(k,l)}$ forment une base de $\mathcal{M}_n(\mathbb{R})$ d'où dim $\mathcal{M}_n(\mathbb{R})=n^2$. La question 3) nous donne alors que le sev des matrices de trace nulle est de dimension n^2-1 .

6